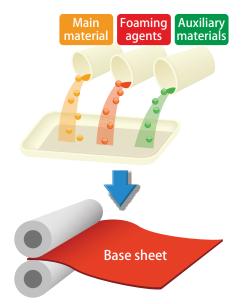


Physically Cross-linked Polyolefin Foam

ONAL

SOFTLON_®

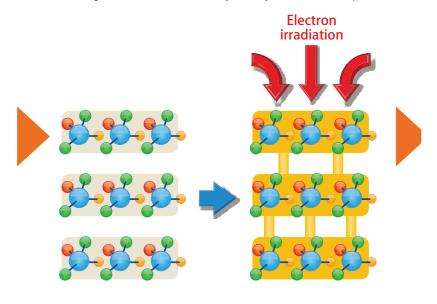
Foam : any number of light cellular solids made by creating bubbles of gas in a material


How SOFTLON is made

SOFTLON was created using new cross-linking following decades of Sekisui Chemical's propri

Extrusion

Extruding Polyolefin


Polyolefin resin is mixed with foaming agents and auxiliary materials, and formed through extrusion. Our high-precision extrusion technique is the basis for our products' fine thickness tolerance.

Cross-linking

Physically Cross-linking

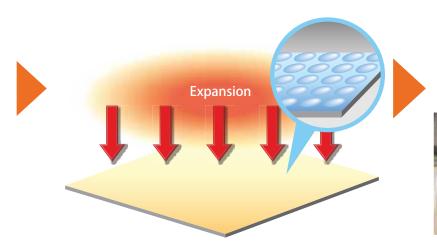
Polyolefin is physically cross-linked with electron beams to cross-link the molecules. This electron irradiation technique is a unique technology in the field of applied industrial radiation, winning the Award of the Society of Polymer Science Japan.

SEKISUI-SOFTLON is a material invented to include air bubbles into polyolefin.

Histo	ry of Sekisui's Foam Business
1964	SEKISUI-SOFTLON is developed at the R&D center
1967	Foam Promotion Division is established; Production of SEKISUI-SOFTLON starts at Musashi Plant
1969	VOLTEK Inc. (now SEKISUI VOLTEK) is founded
1973	ALVEO AG (now SEKISUI ALVEO) is founded
1977	PILON PTY.LTD. (now SEKISUI PILON) is founded
1996	Thai Sekisui Foam Co., Ltd. is founded
2002	Capital participation in Shanghai Holy Co., Ltd. in China (51%)
2003	Capital participation in Young Bo Chemical Co., Ltd. in South Korea (51%)
2006	Construction of Langfang Plant of Young Bo Chemical is completed
2009	Sekisui Alveo acquires Polymer-Tec GmbH
2010	Shanghai Sekisui-Holy Plastics Co., Ltd. is liquidated
2010	Polymer-Tec changes its business name to SEKISUI ALVEO BS

iking technology developed by Sekisui Chemical. The manufacturing technology was invented oprietary research. Polyolefin foam is commercialised as SOFTLON through the following processes.

Foaming


Foaming

Foamed polyolefin expands from 5 to 40 times its original volume. The fine closed-cells are resistant to water and chemicals This supports the stable, superior quality of SOFTLON.

Winding

Winding into sheets

SOFTLON is a soft and continuous sheet-type product. SOFTLON allows for flexible fabrication, such as lamination and moulding.

Product Concept of SOFTLON

Polyolefin Material

SOFTLON features the properties exclusive to polyolefin materials. The chemical resistance of SOFTLON allows it to be used in products that require durability, such as residential insulation and automotive interiors. In addition, it can be easily fabricated due to its heat-mouldable property, ideal for lamination, vacuum forming and heat press moulding.

Chemical

moldabl

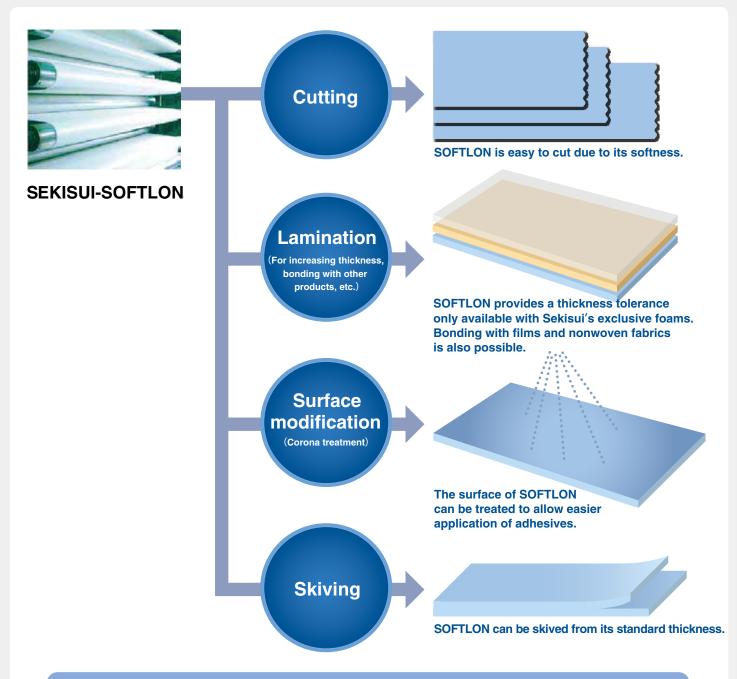
Sekisui Chemical's exclusive electron irradiation technique results in superior and discrete crosslinking. This gives SOFTLON a fine cell structure, better heat resistance and a smooth surface.

Electron irradiation

nsulating

Foam Structure (Closed-cell) 🟓

Light weight Flexible


SOFTLON consists of fine closed-cell foam. Lightweight and flexible properties are realised by foaming polyolefin to 5 to 40 times its original volume. As a characteristic of the closed-cell structure, SOFTLON is well suited for products that demand heat insulation and waterproofing.

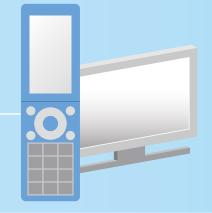
About SOFTLON

- Q1. Does SOFTLON use any environmentally harmful substances?
- A. The main raw material of SOFTLON is polyolefin resin, which is environmentally friendly. No prohibited materials are used in SOFTLON. Common uses of SOFTLON include cap seals,
- developmental toys, and parts for medical equipment. Q2. What is the difference between closed cells and open cells?
- A. Unlike open cells, in a closed-cell structure, each air bubble is formed independent of each other. SOFTLON does not absorb water, has good thermal insulation properties and excellent cushioning characteristics.
- Q3. What is the difference between electron cross-linking and chemical cross-linking?
- A. Products that are cross-linked using electron irradiation have a smooth, flat skin layer compared to chemically cross-linked products. Electron cross-linked products also have smaller, more even cell sizes.
- Q4. Are there any other products made from raw materials other than polyolefin?
- A. Sekisui Chemical also offers a lineup of products that use special types of elastomer and/or rubber as the main material. These products perform special functions, such as vibration suppression and fluid seals.

SOFTLON can be fabricated into various shapes and sizes

Other processing methods are also possible. Please consult our sales representative for more information.

FAQs

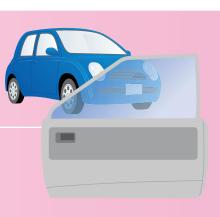

About Processing

- Q1. What are the other possible processing techniques?A. Slitting, texturing (embossing, engraving), routing and
- moulding are possible.
- Q2. What is the suitable grade for thermoforming?
- A. As moulding grades, there are SOFTLON SP, SOFTLON IF, and SOFTLON NF.
- Q3. What thermoforming processes are possible?
- A. Vacuum forming and heat press moulding are possible. Other heat moulding techniques include tubing, in which SOFTLON is moulded into a tube, and embossing on the surface.
- Q4. What kinds of lamination are possible?
- A. Any flexible material can be laminated to SOFTLON foam. For example: films, weaves, fabrics, foils or adhesives.

SOFTLON is offered in a product range suitable for various ind

Tape base / Seal material

Double-adhesive foam tape base, Mobile phone gasket, LCD television gasket, Cap seal, etc.


SOFTLON ES series

[Thin & High-Precision / High-Strength & Flexible]

- SOFTLON IF - SOFTLON ES

Automotive vehicle

Molded door surface lining, Formed instrument panel lining, Formed roof-back duct, Rear light water seal, etc.

SOFTLON SP series

[Heat-Resistant, High-Strength / For vacuum or stamping forming]

- SOFTLON SP-VS - SOFTLON SP-LPM

Heat insulation/ Industrial use

SOFTLON FRND/FR [Fire retardant to UL94-HF1]

OEM , AC Manufacturing Foam tapes

Housing / Construction materials

Heat insulator for metal roof, Rooftop waterproof material, Housing joint filler, Floor underlay, Artificial turf underlay, etc.

6

Heat insulator for long metal foldedplate roof

[Roof lining]

- SOFTLON SK

dustries and applications

XLIM (X-Slim) [Super-Thin IT seal] **Alveocel** [Special closed cell] **SOFTLON IF series** [Heat-Resistant & Flexible / For deep drawing and vacuum forming] EXSEAL - SOFTLON IF [Special rubber watertight seal] **SOFTLON S** series **SOFTLON NF series** [General purpose **SOFTLON** for [Heat-Resistant & Rigid / For deep drawing and extensive application] vacuum forming] **SOFTLON Z series** - SOFTLON NF - SOFTLON S [Odorless, clean material / - SOFTLON FR-ND High physical strength / Stable1 - SOFTLON Z-LD - SOFTLON Z-SD Artilon **Artificial turf** [Heat insulator for rooftop insulation] underlay - Artilon [Shockproof & Durable] **SOFTLON Ezi-Lay** - Alveosport

- Softlon Playsafe

7

[Floor underlay]

SOFTLON can be used in many and varying applications

8

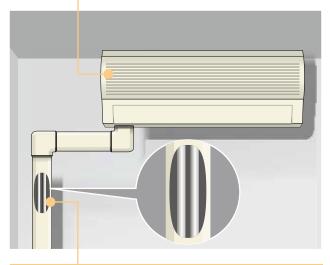
Automotive vehicles

Housing / Construction materials

55457 Sekisui Pilon_Softlon brochure.indd 9

SOFTLON has numerous applications and uses

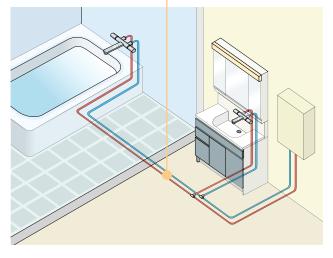
For heat insulation & industrial use


SOFTLON FR-ND Thickness: 2 mm - 10 mm

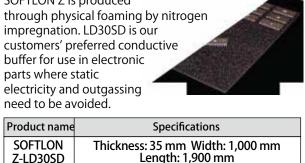
Heat insulator coating resin tubes

SOFTLON PE laminated product

This heat-insulated tube is produced by heat-laminating SOFTLON with PE films (blue and red) and subsequent embossing and tubing. Weatherproofing is also available. Please contact us for specifications.



SOFTLON NF


SOFTLON NF offers good heat formability. It can be made into tubes or deep-drawn through vacuum forming. Designs and patterns can be clearly embossed. Superb heat-resistance and mechanical strength.

Product name Specifications Thickness: 2 mm - 10 mm SOFTLON NF Width: 1,000 mm Length: 200 m

10

Z-LD30SD

Heat insulation / Industrial use Housing / Construction materials

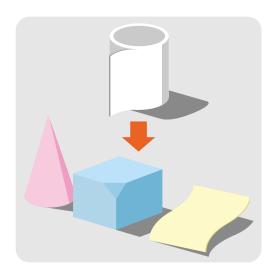
For housing & construction materials

11

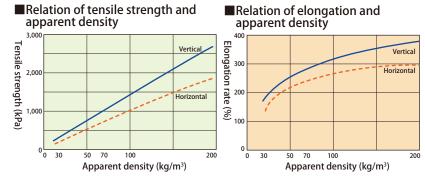
Key Properties of SEKISUI-SOFTLON.

Heat insulation

The layers of air provided by the closed cells that shape SOFTLON provide low thermal conduction and excellent heat insulation. It is an energy-saving material optimal for purposes that require heat or cold to be retained. The water repellant quality also prevents the heat insulation performance from deteriorating due to water absorption.


Comparison of the heat insulation property of SOFTLON S and other materials

Material	Density (kg/m³)	Thermal conduction (W/mK)		
SOFTLON FRND/FR	25	0.032		
Soft urethane foam	25	0.0372		
Rigid urethane foam	25~35	0.0342~0.0582		
Polystyrene foam	16~30	0.0302~0.0440		
Glass wool	10	0.0395		
PVC Nitrile	65~80	0.038		


*Comparison conducted by Sekisui

*Physical property values are representative values and cannot be used as standards.

Formability

SOFTLON is equipped with superior mechanical characteristics, including tensile strength, elongation, and tear strength, which are properties of the electron cross-linked polyolefin foam. The heat formability allows SOFTLON to be deep-drawn using vacuum forming. Designs and patterns can also be clearly embossed.

*Physical property values are representative values and cannot be used as standards.

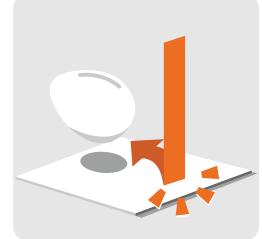
RA% (processability) by grade

•		
SOFTLON NF	#3003	0.7
SOFTLON SP	#1502	1.0
SUFILON SP	#3003	0.8
SOFTLON IF	#1505	1.0
SOFILONIE	#30025	0.9
SOFTLON S	#3003	0.6

*Formability is determined by the maximum RA% (shown above). Grades with an RA% of over 0.8 have especially good thermal processability.

Heat resistance / Flame-retardant property

SOFTLON's typical operating temperature is -80°C up to 120°C depending on grade.


Dimensional change under heat (22 hours under 70°C) (by grade)

Grade	Dimension change rate*	Temperature (22h)
SOFTLON S #0503	-0.3%	70℃
SOFTLON S #3003	-1.1%	70°C
SOFTLON NF #3003	-3.8%	100℃
SOFTLON SP #2502	-1.7%	120℃
SOFTLON Z NB50	-1.3%	200℃

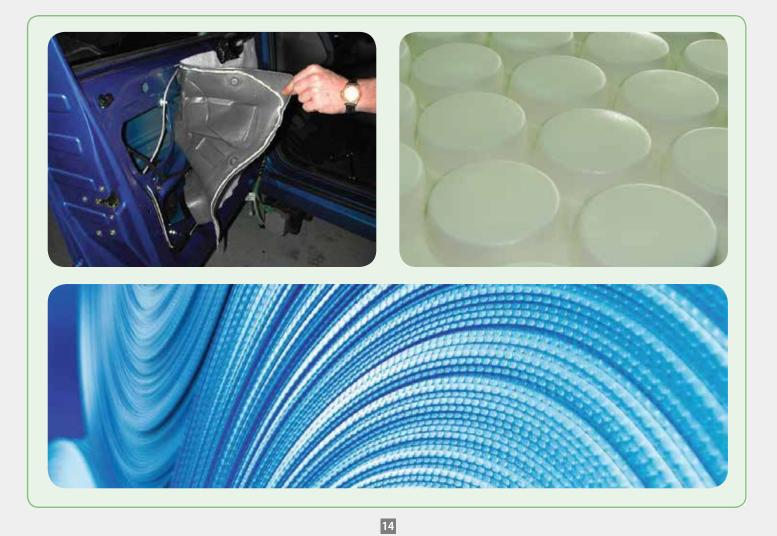
*Measuring method based on JIS K6767; property values are representative values and cannot be used as standards.

*Dimension change rate is the average of Machine and Cross Direction.

Shock absorption

SOFTLON offers excellent shock-absorbent properties. SOFTLON is flexible and exhibits superior compression properties.

Comparison of shock absorption of SOFTLON S and other material s

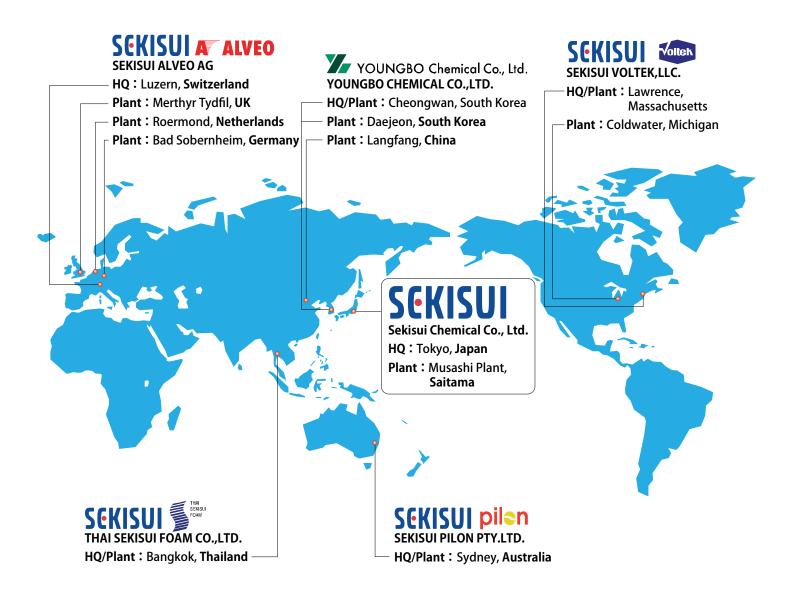

Measurement item		Unit	SOFTLON S (Polyethylene foam)	Soft urethane foam (ether)	Soft PVC foam	Polystyrene foam	
Cell stru	cture		Closed Open		Closed	Closed	
Thickness		mm	3.00	9.84	4.82	5.20	
Apparent density		kg/m ³	33 (0.033g/cm ³)	17(0.017g/cm ³)	140(0.14g/cm ³)	32(0.032g/cm ³)	
Tensile	Vertical	kPa	420(4.3kgf/cm ²)	90 (0.94kgf/cm ²)	$000(10.01mf/m^2)$	-	
strength	Horizontal	"	290 (3.0kgf/cm²)	100(1.04kgf/cm ²)	980 (10.0kgf/cm ²)	_	
Elongation	Vertical	%	204	179	111 5	-	
Liongation	Horizontal	"	165	212	111.5	_	
	25%	kPa	34(0.35kgf/cm ²)	2.5 (0.026kgf/cm ²)	64(0.65kgf/cm ²)	240(2.46kgf/cm ²)	
Compressive strength	50%	"	98(1.00kgf/cm²)	3.2(0.033kgf/cm ²)	145 (1.48kgf/cm ²)	307 (3.13kgf/cm ²)	
	75%	//	320(3.25kgf/cm²)	5.7 (0.058kgf/cm ²)	_	542(5.53kgf/cm ²)	
Compression set		%	6.5	1.5	3.0	21.5	

*Comparison conducted by Sekisui

*Physical property values are representative values and cannot be used as standards.

List of Functions by Grade

	Basic performance (Common functions)				Additional performance					
	Heat insulation	Shock absorption		Moisture resistance	Chemical resistance	Heat resistance	Fire- retardant property	Form- ability	Surface strength	Water- tightness
SOFTLON S	O	O	O	O	O	Standard				
SOFTLON FR-ND	O	O	O	O	O		O			
SOFTLON IF	O	O	O	O	O			O	O	
SOFTLON NF	O	O	O	O	O	O		O	O	
SOFTLON SP	O	O	O	O	O	O		\bigcirc	O	
ARTILON	O	O	O	O	O				O	
SOFTLON SK	O	O	O	O	O					
SOFTLON Z	O	O	O	O	O	O				
XLIM (X-slim)	O	O	O	O	O					
SOFTLON ES	O	O	O	O	O				O	
EXSEAL	O	O	O	O	O					O


[Typical] Physical Properties of SOFTLON-S

		High	Density				Low
Property	Unit	#0503	# 1003	# 1503	# 2003	# 3003	# 4003
Cell structure		Closed	Closed	Closed	Closed	Closed	Closed
Average diameter of cell	mm	0.26	0.27	0.28	0.30	0.30	0.32
Apparent density	g/cm³	0.20	0.10	0.066	0.05	0.033	0.025
Thickness ^(Note 1)	mm	3	3	3	3	3	3
Tonsilo strongth	kPa (Vertical)	2,570	1,290	950	560	420	310
Tensile strength	kPa (Horizontal)	1,790	1,000	510	400	290	220
Florention	% (Vertical)	380	328	280	220	204	161
Elongation	% (Horizontal)	300	265	175	170	165	141
Tooy strongth	kPa (Vertical)	122.5	61.7	41.2	31.4	23.5	19.6
Tear strength	kPa (Horizontal)	101.9	51.0	30.4	20.6	14.7	12.7
Compressive hardness	kPa	15.7	8.3	5.6	5.0	3.1	2.6
	kPa(25%)	323	63	59	53	33	29
Compressive strength	kPa(50%)	559	155	143	128	98	83
	kPa(75%)	1,735	502	441	343	320	246
Compression set	%	3.5	4.0	4.5	5.1	6.5	7.5
Repeat Compression set	%	3.0	3.4	4.0	4.5	5.3	5.9
Thermal Conductivity	W/mK			_		0.0345	0.0321
Dimensional change under heat	%(Vertical)	-0.54	-0.83	-1.03	-1.43	-1.45	-1.50
(22 hours under 70 degrees C)	% (Horizontal)	-0.10	-0.20	-0.30	-0.40	-0.75	-0.90
Water absorption	mg/cm³	0.02	0.03	0.04	0.05	0.07	0.09

(Measuring method: JIS K 6767)

<Note 1> Thickness: Foams are flexible in general. During measurement, as the sample foam changes its thickness depending on the compression, a dial gauge with 0.01 mm graduation was used with a sample area of 10 cm² and sample pressure 2g/cm². <Note 2> Physical property values are representative values and cannot be used as standards. Foam production bases

Sekisui Chemical is the world's largest & leading manufacturer of cross-linked polyolefin foam and operates 11 plants worldwide. All operating under ISO quality systems.

SEKISUI FOAM

Sekisui Pilon Pty Ltd 1-5 Parraweena Rd, Taren Point NSW 2229 Australia Tel: +61 2 9525 9880 Fax: +61 2 9525 8004 www.sekisuipilon.com.au

Thai Sekisui Foam

Amata Nakorn Industrial Estate, 700/329 Moo 6, Tumbol Donhua-Ioh, Amphur Muang Chonburi 20000 Thailand Tel: +66 3821 3219 ~ 26 Fax: +66 3821 3281 www.thaisekisui.co.th

*Not all products available in all markets.

*Specifications are subject to change without notice due to modifications. © Copyright 2011 Sekisui Chemical Co. Ltd

0611/01